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OBSERVATION OF SURFACE-ENHANCED RAMAN SCATTERING FOR TRANSITION-METAL HEXAAMMINE 

CATIONS AT THE OUTER HELMHOLTZ PLANE:  IMPLICATIONS FOR ENHANCEMENT MECHANISMS 

AT ELECTROCHEMICAL INTERFACES 

M.A. Tadayyoni, Stuart Farquharson, and Michael J. Weaver* 
Department of Chemistry 

Purdue University 
West Lafayette, IN 47907,  U.S.A. 

(J O OO i o.. 
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The recent observation of surface-enhanced Raman scattering (SERS) for 

a variety of adsorbates at silver in electrochemical and gas-phase environments 

has generated a plethora of theoretical models to account for the remarkable 

o~~ —i 
(ca.10 fold) observed enhancement of the Raman scattering intensities. 

These models can be divided into those demanding only the presence of the Raman 

scatterer at or close to the metal surface ^"physical models*1), and those 

requiring specific adsorbate-surface interactions (^'chemical models**'). 

Prompted in part by the especially intense SERS seen for specifically adsorbed 

species at silver electrodes, a widely held viewpoint is that the enhancement 

is due in part to chemical interactions between the Raman scatterer and the metal 

surface, possibly involving an adsorbate-adatom ""complex*1. 

" '     I   V ->\ "*- V *Cm • 
We have been examining SERS of inorganic adsorbates at silver-aqueous 

interfaces.   One objective is to examine systematically how the SER spectra 

are influenced by the nature of the adsorbate-surface interactions. A valuable 

class of adsorbates for this purpose is provided by substitutionally-inert 

Cr(III), Co(III) , Ru(III) and Os(III) anirine complexes containing ligands such as 

thlocyanate, bromide, or pyrazine that bind strongly to silver electrodes^ *   ' 

The nature of the adsorbate-surface interactions can be systematically altered 

by varying this bridging ligand.  In addition, the surface concentrations are 

readily obtained from the charge required to reduce the metal cation. 

*Author to whom correspondence should be addressed. 
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A general feature of their SER spectra is the appearance of metal-ammine 

and internal ammine modes as well as bands associated with the surface-bound 

ligands.     The ammine modes are easily identified from the diagnostic 

2e 4 
frequency shifts that occur upon deuteration of the ammine hydrogens.  ' 

Either 0.1 or 0.01 M KC1, or 0.05 M KBr was used as  the supporting electrolyte 

along with 0.05-1 mM of the ammine complexes.  The silver electrode was roughened 

by means of an oxidation-reduction cycle.  Raman excitation at 647 nm was 

used to avoid ammine photodecomposition.  Further experimental details are given 

i  v,   2a,d-f elsewhere. 

• 

1 

An unexpected finding was the observation of a metal-ammine stretching 

mode (vw .,, ca. 450 cm"1) for Cr(NH0)cF  and Cr(NH-)CN0,  although neither M—N j _> j j  j 

fluoride nor nitrate anions are significantly adsorbed at silver in the presence 

of chloride.  '  These results prompted us to examine SERS of Cr(NH-)  .  Indeed, 

a chromium-ammine stretching mode of comparable intensity to that seen for the 

3+ 
surface-attached ammines was obtained, even though Cr(NH-),  clearly lacks 

a means of binding to the silver surface.  The frequency of this band, 450 cm  , 

is close to that for the A,  mode in the normal Raman spectrum. 
Ig 

2+ 
Representative SER spectra obtained for adsorbed Cr(NH-)5NCS  , Cr(NHJ5Br  , 

3+ 
and Cr(NH-),-  are shown in Fig. 1.  The first two complexes are known to be 

adsorbed in amounts approaching a monolayer (2 x 10   mol cm ).  Extensive 

surface binding is confirmed by the appearance of sulfur- and bromide-surface modes, 

(vA . : 220 cm-1, VA D  = 160 cm"1) in the SER spectra of Cr(NH_),NCS2+ and 
Ag-S ' Ag-Br r 3 5 

Cr(NH_),.Br + obtained in KC1 (Fig. 1C,D).  Note that the v„ .. mode for Cr(NH,),3+ 3 5 M-N i  b 

at 450 cm  has a roughly comparable intensity to that for these surface-bound 

2+ 3+ 
complexes.  [The comparison of CrCNH-KNCS  with Cr(NH ),   is expedited by 

deuterating the ammine ligands (dashed curves) in order to remove the 

accidental degeneracy of the 6„„_ and v„ _ 
NCa     Cr—N 

' 
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modes (Fig. 1B,D)].  Peaks are also seen at 265 cm  and 160 cm  in 

chloride and bromide electrolytes (Fig. 1A,B), ascribed to v  _. and v    . 

Comparable results were obtained for Co(NH„), , Ru(NH~)6 , and Os(NH-), . 

Symmetric N-H stretching modes at ca. 3200 cm  were also observed in each case. 

3+ -1 
For Co(NH„), , peaks at both 515 and 450 cm  were seen, consistent with the 

i    D 
8 9 

A,  and E vibrational modes in the bulk-phase Raman spectrum. '  Examination 
lg     g 

3+ 
of Ru(NH )  is of particular interest since this undergoes reversible 

reduction to Ru(NH.J,  (formal potential Ef • -180 mV vs. s.c.e.Tf,     Indeed, 

altering the potential to more negative values in the region -200 to -400 mV 

vs s.c.e. yields a progressive replacement 

of the band at 500 cm  by one at 460 cm  .  These bands are consistent with 

A,  Ru  -NH, and Ru -NH0 vibrations on the basis of the bulk-phase Raman lg       3 3 
4a 

spectra.   The intensity-potential dependencies of these two bands were 

entirely reversible and quantitatively consistent with that expected 

for a one-electron redox couple.  Thus fitting these data to the Nernst 

equation yielded a number of electrons, n = 1.0 + 0.1, and a formal potential 

tl  =-300 + 10 mV vs s.c.e. for 0.05 raM Ru(NH„),3+/2+ in 0.1 M KC1. 
i       — —     3 b — 

The difference between the surface and bulk-phase formal potentials for 

Ru(NH,),    , (E - E ), equals the potential <f> at the site occupied by the 
J O t I K 

complex, <J> = (- 300+ 180) =-120 inV. This potential is compatible with that 
K 

expected at the outer Helmholtz plane (o.H.p.), indicating that the cations 

are indeed located outside the adsorbed halide layer.   Such negative values of 

<p also produce  extremely large hexaaumine concentrations at the o.H.p.  Indeed, 

3+ 
we have detected diffuse-layer adsorption of Ru(NH-).   using rapid scan cyclic 

-11      -2 
voltammetry; surface concentrations around 4 x 10   mol cm  were determined f< 

0.05 mM Ru(NH,),   8. These measurements also yield a value of E* for Ru(NH,):r 
J 0 I 3'6 

equal to -290 ± 10 mV. vs. s.c.e. 

_ . :'»'*>•-*- J 



The foregoing provides persuasive evidence that efficient electrochemical 

SERS can occur for suitably high interfacial concentrations of unbound mole- 

cules even when separated several Angstroms from the metal surface.  Moreover, 

surface attachment seems to yield little or no additional signal enhancement. 

This is not to deny the importance of adsorbate-surface binding to SERS; clearly 

specific adsorption will normally be required in order to yield suitably large 

surface concentrations.  Indeed, the intense stable SERS seen for specifically 

adsorbed anions require coverages approaching a monolayer, apparently due to 

the stabilization of SERS-active surface morphologies by surrounding close- 

3b c 
packed adsorbate.  '  The present results do not contradict this in that altering 

the potential to more negative potentials where the anion coverage falls below 

a munolayer leads to irreversible decreases in the SERS signal for the hexaammine 

as well as for the adsorbed anion.  Thus the sites stabilized by the surfaae- 

bot*nd  halide ions also appear to provide SERS for unbound  hexaammine cations. 

The present results therefore call into question SERS models requiring 

chemisorption of the Raman scatterer to the metal surface.  Nevertheless, 

"surface resonance" enhancement mechanisms involving 

photon-induced charge transfer between the metal surface and the Raman 

lb-c 
scattering molecule °  are not necessarily precluded on the basis of these 

data since efficient electron tunneling is known to occur between metal surfaces 

12 
and cations at the o.H.p.   However, it is unclear to what extent such charge- 

transfer models require chemisorption of the Raman scatterer in order to align 

the energies of the Fermi level and adsorbate electronic states.  8 Further 

theoretical work should clarify this situation. 
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Figure Caption 

SER spectra for Cr(III) ammine complexes at silver-aqueous interface 

in 120-500 cm"1 region.   (A)  1 mM Cr(NH3>j?
+ in 0,01 M KC1, -300 mV vs. 

s.c.e.  (Bj  1 mM Cr(NH-)^+ in 0.05 M KBr, -200 mV.  (C) 1 mM Cr(NH.),Br2+ 
—     JO — —     J 0 

in 0.01 M KC1, -100 mV.  (D)  1 mM Cr(NH-^NCS2"*" in 0.01 M KC1, -100 mV. 

Dashed curves for B and D denote spectral segments obtained for corresponding 

deuterated ammine.  Spectrum (D) also includes vr_N mode (2130 cm ). 

Spectra obtained using ca. 100 mW of 647 nm laser irradiation. 
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Abstract 

Surface-Enhanced Raman Scattering (SERS) has been observed at silver 

electrodes for several transition-metal hexaammine complexes even though these 

cations cannot bind to the metal surface and are excluded from the electrochemical 

inner layer by the presence of a raonolayer of chloride or bromide anions. 

The intensity of the SERS metal-ammine stretching vibrations v    are comparable 

to those seen for closely related pentaammine complexes that are bound to the 

surface via specifically adsorbed coordinated ligands.  For hexaammineruthenium(IIl), 

changes in the V   frequency with potential indicate the presence of an interfacial 

3+/2+ 
Ru(NH^),    couple.  The formal potential of this couple obtained from the 

potential dependence of the SERS intensities is consistent with 

the Raman scattering ions being located at the outer Helmholtz plane. The implications 

of these results to current models of SERS in electrochemical environments are 

noted. 
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